HLA2078
Universal Collarmatic Driver
For G39A or La Ram Type Drill Riveter

ORDERING INFORMATION
1. Determine Hi-Lite/Hi-Lok collar part number to be driven.
2. Determine correct base and spacer combination to fit drill riveter type used (i.e., G39A or G39LA). See Table 1.
3. Select driver assy. See Table 2.
4. Complete Driver Assembly Part Number. See sample above.

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>TABLE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE CONFIGURATION</td>
<td>BASE PART NO.</td>
</tr>
<tr>
<td>G39A</td>
<td>HLB1229</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>LA RAM</td>
<td>HLB1170</td>
</tr>
</tbody>
</table>
HLA2078
Universal Collarmatic Driver
For G39A or La Ram Type Drill Riveter

TABLE 3

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HLA2078- ()</td>
<td>Collarmatic assembly</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>HLB1127</td>
<td>Air supply lines</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>HLB1211</td>
<td>Tool valve control assy.</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>HLB1212</td>
<td>Master P.C. control assy.</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>HLB1219</td>
<td>Control cable</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>HLL405-()-()</td>
<td>Collar auto-feed system</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>HLB1218</td>
<td>Control cable</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>HLL135-()-()</td>
<td>Collar gravity loader system</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>HLB1195-()</td>
<td>Collar feed tube</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>HLB1457-()</td>
<td>Magazine tube assy.</td>
<td>1</td>
</tr>
</tbody>
</table>
TWO PIECE AUTOMATED OFFSET INSTALLATION TOOLING
For use in Fastener Restricted Access Areas of Airframe Assembly

CYCLE BEGINS
Lower ram rises, Offset Tooling clamps structure.
Fastener hole is drilled and threaded pin is inserted through structure.
Threaded collar is loaded by automatic feed mechanism into the Offset Adapter Assembly and verified.

CYCLE CONTINUING
Offset Adapter Assembly with threaded collar rotates 90° to align with threaded pin.

CYCLE CONTINUING
Internal mechanism of installation tool rises, threading collar on pin, and torquing the driving hex to a predetermined torque-off level which assures correct preload in the pin/collar/structure joint.
Internal mechanism retracts down, rotates back 90°, bottom AFM ram/offset anvil lowers, ready for next cycle.
Threaded Pin/Collar installation complete.
1. GENERAL

Customer Name:
Address:
City: State: ZIP:
Contact Name:
Phone: FAX:
Job Number: Date Submitted:
End User:

Are you familiar with Hi-Shear Automatic Fastening Systems? YES NO

NOTE: An Automatic Fastening System consists of:
A. Fastener System
B. Installation Tool
C. Collar Feeding Unit
D. Valve Control Box
E. Optional - Programmable Logic Controller

If YES, would any of these Systems be adaptable to your application? YES NO

If NO, please contact our Installation Tooling Sales Representative or Engineering Department for additional information at (310) 784-4261

2. MACHINE USED

2.1 Make and model:
2.2 Mounting base type (please provide drawings):
2.3 PLC Controller (Make and type voltage/frequency used):
3. FASTENERS TO BE INSTALLED

3.1 Pin Part Number: ____________________________

3.2 Collar Part Number: ____________________________

3.3 Pin installation condition: ☐ a) Clearance ☐ b) Interference fit Amount: __________

4. INSTALLATION TOOL

4.1 Tooling type (refer to attached illustrations): ☐ a) INLINE ☐ b) OFFSET

4.2 Structure dimensions: provide structure sketches (or see sketches on sheet 4 and 5).

 If INLINE, please answer 4.3 and 4.4.

4.3 Pressure sleeve length required (for structure clearance):

4.4 Shape (form) of nose piece required:

 ☐ a) round
 ☐ b) square
 ☐ c) rectangle
 ☐ d) other submit sketch with dimensions

4.5 Lower ram maximum clamping force: ____________________________

4.6 Will the tool be required to rotate in the base:

 ☐ NO ☐ YES ☐ MANUALLY ☐ AUTOMATICALLY

4.7 If YES, how many degrees? ____________________________

4.8 Overall tool height requirement and tolerance (measured from the mounting base to the top of the tool):

4.9 Any possible obstructions on the machine which could impact the tool during production?
5. COLLAR FEEDING UNIT

5.1 Which type of collar feeding unit do you require?
 a) ON the machine (shuttle type) □ go to 5.3
 b) OFF the machine (magazine type) □ go to 5.5

5.2 If ON the machine, what is its position relative to the installation tool (distances):_____________

5.3 What length the collar feed magazine is required: L=____________________

5.4 Can the collar feed magazine be routed smoothly from the feeder to the tool?_____________

5.5 If OFF the machine, how long the collar feed magazine should be: 1= ________________
 or what collar capacity should the feed magazine have (number of collars): n=____________

5.6 How many extra collar feed magazines are required: __________________________

5.7 Electrical voltage/frequency used (for collar loader): __________________________

6. VALVE CONTROL BOX

6.1 Will you be using any other HI-SHEAR Automatic Fastener Systems on this machine? □ YES □ NO

6.2 Do you have a HI-SHEAR Valve Control Box? □ YES □ NO

6.3 Where is the Valve Control Box located relative to the installation tool? __________________________

6.4 What is the air pressure at the machine? P= __________________________ psig [bar]

6.5 What is the air flow in the line? Q= __________________________ cf/min. [cu.m/min.]

6.6 Can you generate clean and dry compressed air at the machine? □ YES □ NO
6. VALVE CONTROL BOX (continued)

6.7 What is the size of the air fitting at the connection? □ 1/4” □ 3/8” or __________

6.8 Electrical voltage/AC - frequency/DC of the electro-pneumatic valves required? _________________

7. OPTIONAL-PROGRAMMABLE LOGIC CONTROLLER

7.1 Do you need an ADD ON Programmable Logic Controller? □ YES □ NO

7.2 What is the voltage/frequency required? _________________

8. YOUR COMMENTS AND ANY OTHER SPECIAL REQUIREMENTS FOR THIS SYSTEM.

__

__

__

__

__
Preliminary Design Requirements for
Automatic Fastening Systems
(Sheet 6 of 6)